So You Want to Do AI Today?
Here’s How to Do it at Scale in a Hurry!

Spring 2024

Oregon State University

SMU
It’s Not Just About the Hardware
Research Computing at OSU

• Currently 95% distributed, with enclaves in various colleges.
• Preparing for new supercomputer in two years with Research Computing Taskforce 2030 and AI Advisory Group and AI Coordinating team.
• Datacenter will house the supercomputer and is built to hold Version 2 several years down the road.
• Networking to most campus buildings, including the CIC, will be 100Gb, with 100Gb connectivity from the campus to the Internet.
• Purchased several servers to prepare researchers on the new platform.
• Working with human resources office to develop a classification for Research Software Engineers / AI Engineers and plan on hiring up to 6 within the next year.
Research Computing at OSU

• Digital Research Infrastructure will provide research computing to the campus, with plans to deploy centralized services to the campus.
• Key to this will be both faculty lead steering committee and governance.
• DRI looks to have at least 50% of their personnel as researcher-facing, with the other 50% responsible for the day-to-day operations of the supercomputer, clusters, and storage systems.
• The idea is to offer a white-glove service for research computing, going beyond the HPC and storage.

• Travelled to Southern Methodist University and the University of Florida to better understand their research computing and academic programs.
University Data Center
University Data Center Design Goals

1. Anchor a high-speed fiber network to all buildings and the Internet.
2. Provide space, power, and cooling to house expansion of High-Performance Computing (HPC).
3. Provide long term ability to grow power/cooling capacity.
4. Flexible design to meet current as well as anticipated future technology needs of the University.
5. Durable building construction to last more than 50 years.
Switchgear-A and Switchgear-B

- Dual underground feeds from Campus Power Grid
- Steps power down from 13,800 volts to 480 volts
- Distributes power to Mechanical Equipment and UPS Units for IT Gear

Notes:
- High voltage - Power lines running across country: 345,000 volts
- Medium voltage - City power lines: 13,800 volts
- Low voltage – Commercial Building distribution: 480 volts
UPS Room - 3 Uninterruptible Power Supply Units

- Receives Power Distribution from Low Voltage Switchgear
- UPS Batteries Provide Continuous Power to Critical IT Gear When Utility Power Fails.
- Allows Time For Generator to Start & Take Over The Load.
- Battery Run Time Design For 7-Minutes At Full Load.
Information Technology Data Hall

Safe Home for IT Gear

- Cold Air Plenum under 3-Foot Raised Floor
- Hot Air Return Above Drop Ceiling
- Fire Suppression System: Double Action Water
- VESDA: Very Early Smoke Detection
Jen-Hsun and Lori Huang Collaborative Innovation Complex
Jen-Hsun and Lori Huang Collaborative Innovation Complex
ManeFrame II

» Dramatically increases the computational capability and performance available for data science and research

» Features state-of-the-art CPUs, accelerators, advanced networking technologies, and future-forward GPU-accelerated nodes and remote desktop capabilities

» Dedicated cluster helps to recruit research top faculty and students
RESEARCH SUPPORT SATISFACTION SPECIFICS

How satisfied are you with the following SMU research support service(s)?

PI Faculty

RESULTS

- High Performance Computing (HPC) - 3.67
- Technology consulting for research - 3.44
- Access to data scientists, data analysts, and data visualization specialists to help with research - 2.54
- Institutional repository of intellectual output (e.g. publications, prints, posters, etc.) - 2.71
- Digital preservation and curation of research data - 2.64
- Support for finding and using open content (course materials, texts, data sets, etc.) - 2.79

SCALE Very Satisfied (5)—Satisfied (4)—Neutral (3)—Dissatisfied (2)—Very Dissatisfied (1)
OIT Research Technology Services

» Eric Godat, Ph.D.
» Director – Research Technology Services
» Ph.D. Theoretical Particle Physics – SMU ’18
» Data Scientist

Signature Projects:
» Data Science for Social Good
» Digital Humanities Research Institute
» LASSO Scheduling Algorithm
» Quantifying Urban Resilience with Cell Phone GPS
OIT Research Technology Services

» Rob Kalescky, Ph.D.
» Research Technology Scientist
» Ph.D. Computational and Theoretical Chemistry – SMU ’14
» HPC Applications Scientist
» Signature Projects:
 » ChemGen
 » PyHOPs Memory Optimization and Parallelization
 » Gaussian, Local Modes, URVA Porting and Optimization
 » LASSO Scheduling Algorithm
OIT Research Technology Services

» John LaGrone, Ph.D.
» Research Technology Scientist
» Ph.D. Applied Mathematics – SMU ‘16
» HPC Applications Scientist

Signature Projects:
» NonInvasive Dance Scanning
» Class HPC Containerization
» BioSignal Analysis
Tue Vu, Ph.D.
Research Technology Scientist
Ph.D. Computational Hydro-Climatology
AI/ML Applications Scientist
Signature Projects:
 » Quantifying Urban Resilience with Cell Phone GPS
 » Personality Trait Characterization with LLMs
 » African Parliament Data Extraction
 » VR Training for Post-Partum Hemorrhage
OIT Research Technology Services

» Guillermo Vasquez
» Research Technology Scientist
» Internet of Things Developer

» Signature Projects:
 » NonInvasive Dance Sensors
 » Water Quality Helmet
 » Newton’s eApple
 » Biometric sensors for Mice
Mateo Langston Smith

Human Trafficking Data Analyst

Signature Projects:

- Human Trafficking Data Warehouse
- 12 Hills Interactive Dashboard
- Dialogic Classroom Data Visualization
- IoT GPS Tracking Module Dashboard
<table>
<thead>
<tr>
<th></th>
<th>ManeFrame III (2023)</th>
<th>NVIDIA DGX SuperPOD (2022)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Ability</td>
<td>1000 TFLOPS</td>
<td>1,644 TFLOPS</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>CPU Cores (AVX2)</td>
<td>25,600</td>
<td>2,560</td>
</tr>
<tr>
<td>Total Accelerator Cores</td>
<td>0</td>
<td>1,392,640</td>
</tr>
<tr>
<td>Total Memory</td>
<td>112 TB</td>
<td>52.5 TB</td>
</tr>
<tr>
<td>Node Interconnect Bandwidth</td>
<td>200 Gb/s</td>
<td>10x200 Gb/s</td>
</tr>
<tr>
<td>Work Storage</td>
<td>3.4 PB</td>
<td>768 TB (Shared)</td>
</tr>
<tr>
<td>Scratch Space</td>
<td>3.4 PB</td>
<td>750 TB</td>
</tr>
<tr>
<td>Archive Capabilities</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Operating System</td>
<td>Ubuntu 22.04</td>
<td>Ubuntu 20.04</td>
</tr>
<tr>
<td>GPUs</td>
<td>None</td>
<td>160 Nvidia A100s</td>
</tr>
</tbody>
</table>
HPC Software Stack

Applications:
- R
- aimall
- amber
- ansys/electronics
- ansys/fluidstructures
- cfour/mpi
- cfour/nompi
- charmm
- cplex
- demon
- emacs
- eog
- evince
- gamess
- gedit
- matlab
- molpro
- q-chem
- quantum_atk
- synopsys/photonicssolutions
- tcad
- texlive

Applications available via Spack:
- amd-aocl
- arpack-ng
- arrayfire
- bedtools2
- boost
- cuda
- cudnn
- cvs
- dalton
- ddd
- dos2unix
- freerut
- g2c
- gcc
- gdb
- ghostscript
- git-lfs
- gnuplot
- graphviz
- gromacs
- imagemagick
- intel-mkl
- intel-oneapi-mkl
- intel-tbb
- jags
- kokkos
- krb5
- lammps
- llvm
- mesa
- molden
- mumps
- namd
- nccl
- ncurses
- netlib-lapack
- netlib-scalapack
- nvtop
- openblas
- opencv
- paraview
- patchelf
- psi4
- py-deepdiff
- py-pint
- py-pydantic
- py-reportseff
- py-scipy
- quantum-espresso
- root
- ruby
- samtools
- sratoolkit
- star
- tcl
- tcsh
- unixodbc
- valgrind
- yaml-cpp

Compilers:
- gcc/11.2.0
- intel/2023.1
- intel/oneapi/2023.2
- nvidia/21.3
- nvidia/23.5

Users can also install software themselves or request software be added by OIT RTS
Applications:

- R
- aimall
- amber
- ansys/electronics
- ansys/fluidstructures
- cfour/mpi
- cfour/nompi
- charmmp
- cplex
- demon
- emacs
- eog
- evince
- gamess
- gedit
- matlab
- molpro
- q-chem
- quantum_atk
- synopsys/photonicssolutions
- tcad
- texlive

Applications available via Spack:

- amd-aocl
- arpack-ng
- arrayfire
- bedtools2
- boost
- cuda
- cudnn
- cvs
- dalton
- ddd
- dos2unix
- freeglut
- g2c
- gcc
- gdb
- ghostscript
- git-lfs
- gnuplot
- graphviz
- gromacs
- imagemagick
- intel-mkl
- intel-oneapi-mkl
- intel-tbb
- jags
- kokkos
- krb5
- lammps
- llvm
- mesa
- molden
- mumps
- namd
- nccl
- ncurses
- netlib-lapack
- netlib-scalapack
- nvtop
- openblas
- opencv
- opencv
- openfoam
- openfoam-org
- openmm
- openmolcas
- openmpi
- paraview
- patchelf
- psi4
- py-deepdiff
- py-pint
- py-pydantic
- py-reportseff
- py-scipy
- quantum-espresso
- root
- ruby
- samtools
- sratoolkit
- star
- tcl
- tcsh
- unixodbc
- valgrind
- yaml-cpp

Users can also install software themselves or request software be added by OIT RTS.
AI/ML Projects

» Quantifying Urban Resilience with respect to natural hazard for multi-cities using Cellphone GPS
 » Big data project involving parallel processing and GPU utilization
 » Dask, cuDask, RAPIDS

» Characterize personality traits from life narrative interviews using Large Language Modeling
 » NLP with Transformer models
 » Pytorch, Transformers

» Web-scraping and Text mining to extract 14 African countries’ parliament members for Political science research
 » Text mining with Name Entity Recognition
 » NLTK, spacy, NER, scikit-learn

» Benchmarking different GPU architectures for CIFAR100 image detection
 » Computer vision modeling
 » Tensorflow, Convolution Neural Network

» Finetuning chatbot model using Gutenberg’s sacred library
 » Large Language Model application
 » Pytorch, Transformers, OpenAI, HuggingFace

» Route to school identification using cellphone data
 » Big data project involving parallel processing and GPU utilization
 » Dask, cuDask, RAPIDS

» Bus route to hospital optimization using cellphone GPS
 » Big data project involving parallel processing and GPU utilization
 » Dask, cuDask, RAPIDS

» Community traveling pattern using cellphone GPS
 » Big data project involving parallel processing and GPU utilization
 » Dask, cuDask, RAPIDS

» Using LASSO to identify the most sensitive parameters for bike share companies
 » Machine Learning project
 » scikit-learn, LASSO

» Using YOLO to detect zebra crossing at infrastructure deserted neighbourhood
 » Computer vision project
 » tensorflow, yolo
Research Technology Services Help Desk Tickets (2014-2023)

» Research Technology Services: those requests aligning to research technology support software, hardware, infrastructure, connectivity programming, consultation, etc.)

» Research Technology Services tickets include support and system administration for:

1. HPC account management
2. client computer management
3. software support
4. basic technical troubleshooting
5. consultation/other

» 815 unique faculty, students, staff submitted 3361 research services help tickets

» 3361 research technology support tickets closed by 58 different OIT staff members

» Top 5 OIT research technology services team members:

» Richard England (2413 research support tickets closed)
» Amit Kumar (313 research support tickets closed)
» John LaGrone (264 research support tickets closed)
» Rob Kalescky (215 research support tickets closed)
» Other OIT Personnel (156 research support tickets closed)
Research Technology Services Help Desk Tickets (2014-2023)
Research Technology Services: Projects
(work requests requiring 10 or more hours)

» 151 projects completed between 2017-2023
 » 56% projects relate to supporting other research technology & researchers
 » 44% projects include some support for HPC technologies & researchers
» 25% of projects relate to general research technology system administration & support
» 32% of project requests come from Dedman College
» 43% of project requests come from other schools/areas
 9% Simmons | 7% Lyle | 7% Libraries | 6% Meadows
 6% CRC | 4% Cox | 2% ORI | 1% Law | 1% DSI
» The OIT Research Technology Services team is involved in most projects and many other areas of OIT also contribute to research projects and provide technical SME as necessary
» Some PI’s use grant funding to hire dedicated project-based OIT people
Research Technology Services: Projects
(work requests requiring 10 or more hours)
OIT Research Support Project Distribution (areas)

- 32% of project work is for Dedman College
- 25% of project work is spent maintaining research systems, HPC, and other infrastructure for SMU
- 43% project work in:
 - 9% Simmons
 - 7% Lyle
 - 6% Meadows
 - 6% CRC
 - 4% Cox
 - 2% ORI
 - 1% Law
 - .7% DSI
How can OIT improve services and experiences for researchers?

1. Do a better job communicating availability of and how faculty can get help from OIT research support team
2. Develop closer personal relationships and deeper understanding of research needs
3. Reduce layers/barriers between researchers and relevant OIT SME's
4. Create comprehensive website “menu” of all OIT research services and solutions (with examples!)
5. More OIT-hosed lunches, seminars, workshops, road-shows, demonstrations, etc.—specifically for research service
6. Create a “researcher-pairing” or “research-community” portal where faculty can find research collaborators or information on specific projects, topics, software, partnerships, etc.
Igniting Artificial Intelligence Supercomputing in Dallas
Tiny Computer, Huge Learnings: Students at SMU Build Baby Supercomputer With NVIDIA Jetson Edge AI Platform

The mini cluster will be on display at the SC22 supercomputing conference in Dallas, running Nov. 13-18.

November 7, 2022 by Angie Lee
Contact Us

egodat@smu.edu
smu.edu/OIT/research
Data Science Hub - Ford Hall 119
Prosperity Widely Shared

• Our training for the supercomputer started by leveraging existing relationship with NVIDIA for classes and workshops.

• We are able to share these classes and workshops with regional universities and colleges.

• We plan to share the supercomputer itself with regional universities, colleges, and K-12 for academic purposes.
Harvard Business Review 13 Principles

- Informed Consent
- Aligned Interests
- Opt In and Easy Exits
- Conversational Transparency
- Debiased and Explainable
- AI Training and Development
- Health and Well-Being
- Data Collection
- Data Sharing
- Privacy and Security
- Third Party Disclosure
- Communication
- Laws and Regulations
Thank You