
Globus: To Compute and 
Beyond

Vas Vasiliadis
vas@uchicago.edu

December 6, 2022



Agenda

• Motivation
• Capabilities overview
• Current application examples
• Synergy with Globus data management
• è Discussion

2



General Purpose Computing is morphing…

“…the economic cycle that has led to the 
usage of a common computing platform, 
underpinned by rapidly improving universal 
processors, is giving way to a fragmentary 
cycle, where economics push users 
toward divergent computing platforms 
driven by special purpose processors.”

3

“The Decline of Computers as a General Purpose Technology”, 
Thompson, N. & Spanuth, S., Communications of the ACM, March 2021



The research computing ecosystem is rapidly evolving

Resources 

• Hardware specialization
• Specialization leads to 

distribution

Workloads

• Interactive, real-time 
workloads

• Machine learning training 
and inference

• Components may best be 
executed in different places

Users

• Diverse backgrounds 
and expertise

• Different user interfaces 
(e.g., notebooks)



Our data management legacy is also morphing…

• From fast, reliable, data transfer …
• … to secure data sharing …
• …and data management automation at scale
• But research flows inevitably include computation

è Deliver the same “fire-and-forget” capabilities for 
computation as we do for data management



Why do we need managed computation?

• Remote computing is notoriously complicated
– Authentication
– Network connections
– Configuring/managing jobs
– Interacting with resources (waiting in queues, scaling nodes)
– Configuring execution environment
– Getting results back again

• Researchers need to overcome the same obstacles 
every time they move to a new resource

6



Does FaaS make sense for research?

• Support new workloads by 
decomposing applications into 
functions
– Simplify development, maintenance, testing

• Facilitate use of diverse compute 
resources
– Abstract heterogeneous compute infrastructure

• Enable fluid function execution across 
the computing continuum
– Enable portability and sandboxing

7



Goal: Move closer to researchers’ environments

• Researchers primarily work in high level languages
• Functions are a natural unit of computation
• FaaS allow researchers to work in a familiar language 

(e.g., Python) using familiar interfaces (e.g., Jupyter)

8



FaaS as offered by cloud providers

9

• Single provider, single 
location to submit and 
manage tasks

• Homogenous execution 
environment 

• Transparent and elastic 
execution (of even very 
small tasks)

• Integrated with cloud 
provider data 
management

Cloud 
Provider 1

Cloud 
Provider 2



FaaS as the interface to the research 
computing ecosystem?

10

Still need…

• Single interface

• Homogenous execution 
environment 

• Transparent and elastic 
execution

• Integrated with data 
management



funcX: Globus for compute

Managed, federated 
Functions-as-a-Service for 

reliably, scaleably and 
securely executing functions 

on remote endpoints from 
laptops to supercomputers



The funcX model

• funcX service — Highly available cloud-hosted service; 
provides managed fire-and-forget function execution

• funcX endpoint — Abstracts access to compute 
resources (edge device to supercomputer)

• SDK — Python interface for interacting with the service; 
familiar Globus look and feel

• Security — Leverages Globus Auth; funcX endpoints are 
resource servers, authN and access via tokens

12



Transform laptops, clusters, clouds into function 
serving endpoints

• pip installable endpoint
– Globus Auth for registration

• Elastic resource provisioning from local, 
cluster, or cloud system (via Parsl)

• Parallel execution using local fork or via 
common schedulers
– Slurm, PBS, LSF, Cobalt, K8s

• Optional managed execution in Docker, 
Singularity, Shifter containers

• Endpoint sharing with collaborators

13



Executing functions with funcX

• Users invoke functions as tasks
– Register Python function body
– Pass input arguments
– Select endpoint(s)

• funcX stores tasks in the cloud
• Endpoints fetch waiting tasks (when 

online), run the task, and return the 
results (or errors)

• Results stored in the cloud; users 
retrieve results asynchronously

• Functions shareable with collaborators

14



Usage is growing rapidly

Early adopters generally in 
one of three categories:
• Remote (bag-of-tasks) 

execution
• Research automation
• Platform for building other 

services >20M tasks, >340K functions, >4000 endpoints



Application: Using AI and supercomputers to 
accelerate drug development

16

CHEMICAL 
LIBRARY DATABASE

AND MORE

known 
molecules4B

COMPUTING
RESOURCESCANONICALIZATION COMPUTE FEATURES DEEP LEARNING 

FILTERING

FINGERPRINTING SIMILARITY SEARCH

GENERATE IMAGES CNN FILTERING

Babuji, et al. Targeting SARS-CoV2 with AI- and HPC-enabled Lead Generation: A First Data Release. 



Globus 
Flows

Automation: Serial crystallography

Image 
processing

Data capture

funcX

Launch QA 
job

Carbon!

Check 
threshold

Transfer

Transfer 
raw files

funcX

Analyze 
images

funcX

Visualize

Transfer

Move results 
to repo

funcX

Gather 
metadata

Search

Index 
ingest

Share

Set access 
controls

Data publication



Researcher needs to 
run a computation on 
a remote PC, cloud, 

supercomputer

1. Compute

Compute Facility

Collaborator wants to 
run their colleague’s 

computation on 
another system closer 

to their data

3. Share

Instrument

5. Build

Gateway and application 
developers want to add remote 

computation to their code 

2. Specialize

Researcher needs to 
move it to a new system 

or architecture to 
improve performance

4. Community 
Access

Collaborators want 
to share access to a 

single allocation to 
run compute tasks

funcX as a platform for research computing



Discussion

• What use cases do you think funcX will be useful for? 
• What barriers do you see to adoption?
• What questions would you want to ask before 

deploying? 
• Imagine a world in which all computing resources had 

a funcX endpoint, what new use cases would be 
enabled?

20



Acknowledgements

• Kyle Chard
• Ryan Chard
• Yadu Babuji
• Zhuozhao Li
• Tyler Skluzacek
• Anna Woodard 

22

• Ben Blaiszik
• Ben Galewsky,
• Josh Bryan
• Daniel S. Katz
• Ian Foster



Thank you, funders...
U . S . D E PARTMENT OF

ENERGY


