Globus: To Compute and Beyond

Vas Vasiliadis vas@uchicago.edu

December 6, 2022

Agenda

- Motivation
- Capabilities overview
- Current application examples
- Synergy with Globus data management
- Discussion

General Purpose Computing is morphing...

"...the economic cycle that has led to the usage of a common computing platform, underpinned by rapidly improving universal processors, is giving way to a fragmentary cycle, where economics push users toward divergent computing platforms driven by special purpose processors."

"The Decline of Computers as a General Purpose Technology", Thompson, N. & Spanuth, S., Communications of the ACM, March 2021

The research computing ecosystem is rapidly evolving

Resources

- Hardware specialization
- Specialization leads to distribution

Workloads

- Interactive, real-time workloads
- Machine learning training and inference
- Components may best be executed in different places

Users

- Diverse backgrounds and expertise
- Different user interfaces (e.g., notebooks)

Our data management legacy is also morphing...

- From fast, reliable, data transfer
- ... to secure data sharing ...
- …and data management automation at scale
- But research flows inevitably include computation

→ Deliver the same "fire-and-forget" capabilities for computation as we do for data management

Why do we need managed computation?

- Remote computing is notoriously complicated
 - Authentication
 - Network connections
 - Configuring/managing jobs
 - Interacting with resources (waiting in queues, scaling nodes)
 - Configuring execution environment
 - Getting results back again
- Researchers need to overcome the same obstacles every time they move to a new resource

Does FaaS make sense for research?

- Support new workloads by decomposing applications into functions
 - Simplify development, maintenance, testing
- Facilitate use of diverse compute resources
 - Abstract heterogeneous compute infrastructure
- Enable fluid function execution across the computing continuum
 - Enable portability and sandboxing

Goal: Move closer to researchers' environments

- Researchers primarily work in high level languages
- Functions are a natural unit of computation
- FaaS allow researchers to work in a familiar language (e.g., Python) using familiar interfaces (e.g., Jupyter)

FaaS as offered by cloud providers

- Single provider, single location to submit and manage tasks
- Homogenous execution environment
- Transparent and elastic execution (of even very small tasks)
- Integrated with cloud provider data management

FaaS as the interface to the research computing ecosystem?

Still need...

- Single interface
- Homogenous execution environment
- Transparent and elastic execution
- Integrated with data management

funcX: Globus for compute

Managed, federated Functions-as-a-Service for reliably, scaleably and securely executing functions on remote endpoints from laptops to supercomputers

The funcX model

- funcX service Highly available cloud-hosted service; provides managed fire-and-forget function execution
- funcX endpoint Abstracts access to compute resources (edge device to supercomputer)
- SDK Python interface for interacting with the service; familiar Globus look and feel
- Security Leverages Globus Auth; funcX endpoints are resource servers, authN and access via tokens

Transform laptops, clusters, clouds into function serving endpoints

- pip installable endpoint
 - Globus Auth for registration
- Elastic resource provisioning from local, cluster, or cloud system (via Parsl)
- Parallel execution using local fork or via common schedulers
 - Slurm, PBS, LSF, Cobalt, K8s
- Optional managed execution in Docker, Singularity, Shifter containers
- Endpoint sharing with collaborators

Executing functions with funcX

- Users invoke functions as tasks
 - Register Python function body
 - Pass input arguments
 - Select endpoint(s)
- funcX stores tasks in the cloud
- Endpoints fetch waiting tasks (when online), run the task, and return the results (or errors)
- Results stored in the cloud; users retrieve results asynchronously
- Functions shareable with collaborators

Usage is growing rapidly

Early adopters generally in one of three categories:

- Remote (bag-of-tasks) execution
- Research automation
- Platform for building other services

Application: Using AI and supercomputers to accelerate drug development

Automation: Serial crystallography

Data capture

Carbon! Check threshold

Data publication

Share

Set access controls

Transfer

Move results to repo

funcX

Gather metadata

funcX

Visualize

funcX as a platform for research computing

Discussion

- What use cases do you think funcX will be useful for?
- What barriers do you see to adoption?
- What questions would you want to ask before deploying?
- Imagine a world in which all computing resources had a funcX endpoint, what new use cases would be enabled?

Acknowledgements

- Kyle Chard
- Ryan Chard
- Yadu Babuji
- Zhuozhao Li
- Tyler Skluzacek
- Anna Woodard

- Ben Blaiszik
- Ben Galewsky,
- Josh Bryan
- Daniel S. Katz
- Ian Foster

Thank you, funders...

National Institute of Standards and Technology U.S. Department of Commerce

