
Building a NetDevOps Team
Shannon Byrnes - Sr. NetDevOps Engineer, Infrastructure Systems & Software, Internet2
Dustin Mouton - Assistant Director, Network Services, University of Arizona
AJ Ragusa - Manager - Network Analysis and Control - GlobalNOC - University of Indiana
Mike Simpson - Director, Infrastructure Systems & Software, Internet2

March 7, 2024

~ 4 ~

Agenda

● Reminder: What is NetDevOps?
● Stories:

○ University of Arizona with Dustin Mouton
○ GlobalNOC at IU with AJ Ragusa
○ Internet2 with Mike Simpson

● Q&A

What is NetDevOps?
Featuring: Broken-down Buzzwords

Shannon Byrnes, Sr. NetDevOps Engineer
Infrastructure Systems & Software

Internet2

~ 6 ~

January 2019

https://trends.google.com/

~ 7 ~

Obligatory “What is a NetDevOps Team” Slide

A network automation team that applies
DevOps principles to support and drive
automation and orchestration.

Has skill sets like:
● Software Development
● Network Engineering
● Systems Administration
● Cloud Administration

Does things like:
● Infrastructure as Code (IaC)
● Version Control
● Continuous Integration (CI)
● Continuous Deployment (CD)

Not exactly like this. But close enough.

~ 8 ~

Why the hype?

The combination of these skill sets can result in network automation software
that helps you manage your network safely, securely, and at scale.

Side effects include:
● Guarding against employee turnover.
● Confidence during security audits and cyber threats.
● Reduction in cognitive load across your team, increasing efficiency and

morale.
● Reduction in manual work load across your team, giving time back to your

employees to do greater things.
● Career growth opportunity.
● Mitigated or removed problems that exist when trying to automate your

network without dedicated staff.

~ 9 ~

A Loaded Example: An attempt at removing the black box.

bgp_configuration:
 - as_number: 65001
 neighbors:
 - ip_address: 192.168.1.2
 remote_as: 65002

Router(config)# router bgp 65001
Router(config-router)# neighbor 192.168.1.2 remote-as 65002

set protocols bgp group my_group type external
set protocols bgp group my_group peer 192.168.1.2 remote-as 65002

I Spy:
1. A software developer
2. A network engineer
3. “Infrastructure as Code”
4. “Version Control”

~ 10 ~

An Oversimplification
I Also Spy:
1. Continuous Integration
2. Continuous Deployment
3. Systems and/or Cloud Administration

CI Says:
Let my engineer add a new BGP neighbor
into the file, press a button to launch
scripts, then press a button to deploy it
onto the router, then press a button to
verify all is well.

CD Says:
Let my engineer add a new BGP neighbor
in the file… and then grab a cup of coffee.

~ 11 ~

Software
Development Team

Sysadmin

Sysadmin

Sysadmin

Software
Developer

Software
Developer

Software
Developer

Network
Engineer

Network
Engineer

Network
Engineer

Network
Engineering Team Systems Team

In the middle: Some managers and projects
competing for prioritization

~ 12 ~

Network
Engineer

NetDevOps Team

Sysadmin

Software
Developer

And maybe you have this guy, you lucky org, you

Cross Training

This is another over-simplification
● Varying team sizes
● Individuals with more than one

skill set
● At very large team scales, may

require reorganization.

But most important: Remove silos
and barriers to collaboration

* At large scales, you may still
have some lines of separation.

Dustin Mouton - Assistant Director, Network Services, University of Arizona

Building a NetDevOps Team

Campus Perspective - Before NetDevOps Integration

● Large Campus of 50k+ Students a Semester
○ 70+ different platforms (now over 90)
○ 1800+ wired devices (now over 3000)
○ 9000+ access points (now over 11000)

● Challenges
○ Security
○ Diversity
○ Scalability
○ Global configuration consistency

HELP!! Where Do I Start!!

● The scale of campus infrastructure was becoming too much.

● The idea of a network engineer who programs was not foreign. Old

scripts and software lying around that no one understood, written

by a retired engineer.

● “A programming person sounds like a good idea for our backfill…”

Note: NetDevOps was not a
well-known concept at the time.

Personnel…Who?…Dilemma

What are the options?
● Do we repurpose Network Engineers?
● Do we force Network Engineers to take

on additional responsibilities?
● New hire for (what would be) a

NetDevOps role?
○ Who the heck is going to fund this?

We don’t want this.

Attempt #1 at a Network Automation Team:
Adjusting the Backfill Position

1. Determined specific goals for the position
○ Automate device image upgrades
○ Locate underutilized infrastructure
○ Standardize network configuration
○ And other repetitive (boring) work

2. Rewrote the entire job description
○ Networking was not the priority
○ Added buzzwords like Programming and Automation

Things that went well

● Foundation of a Source of Intent
● Major accomplishments

○ Automated image upgrade tooling
○ Automated device onboarding into NetBox
○ Mass configuration changes
○ Project-specific configuration deployments, such as wired dot1x,

IP helper migrations, config standardizations
● Leadership saw tangible benefits from reports and automation.

Dramatically increased support.
● Maturity of network automation rose with time and effort.

Things that did not go well

● Automation engineers hopped projects without documenting or
refining that was implemented.

● Not enough experience to provide educated time estimates. Many
corners cut.

● Engineers doing automation required a lot of focused time, and could
not maintain their original day-to-day duties. Workload ended up
unexpectedly moving to other team members.

● Without mentorship, automation team lacked foundational knowledge
on how to operate effectively. Ex., sprint meetings, effective usage of
version control, code review, etc.

● The lack of a formal NetDevOps team was limiting.

Awwww nuts.

The Great 2022 Mass Exodus

● Lost four skilled staff members to significant
career opportunities through professional
development
○ Had operated independently
○ All left within a 1.5-month period
○ Documentation and tools became

unmanageable for remaining Network
Engineering staff.

Attempt #2 at a Network Automation Team:

1. Took all the lessons learned from #1

2. Form a ‘Real’ team

○ Propose new positions at different skill levels (Jr., Sr., Pr.)

○ Define a new pillar within Network Services to focus on NetDevOps

○ Utilize a current staff member to function as a team lead

3. Have new/current staff review current and previous tools (What can

be deprecated vs. refactor)

How’s attempt #2 going?
● What is better?

○ A well-defined and structured NetDevOps team. Code planning,

creation, review, and deployment becomes well understood by

many instead of one.

○ More refined training provided by the NetDevOps team to other

Network Services staff.

○ Tools are easier to understand and use by the Network

Engineering centric staff.

○ Reports to present to Senior Leadership are more easily

generated and data collected is consistent.

○ Plenty more!

Goals and Lessons Learned

Culture Shift - A must!

● Transforming as a team

● Demonstrating benefits

● Creating a new mindset

● How do we get the bad things to not happen again?

Staff Training, Development,...oh, and hiring…probably

● Outline plans to train current Network Engineers

○ Dedicated time for training

○ Knowledge Transfer among team

○ Set aside training budgets

● Continued education for developers and engineers.

Case studies and Future trends

Engaging your Senior Leadership

● Provide examples of organizations or universities that have
succeeded in deploying NetDevOps initiatives.

● Highlight benefits those organizations have achieved
○ Increased agility
○ Reduced downtimes
○ Improved user/network engineer experience

● Discuss emerging trends in network automation and tools that
can further increase team productivity and efficiency.

Building a NetDevOps team

How we built a Network Automation team
inside of the GlobalNOC.

AJ Ragusa - Manager - Network Analysis and Control

2019/2020 the GlobalNOC Renewal Program

● In 2019 and 2020 the GlobalNOC Decided that one of the key tools that was needed
was a Network Automation Suite. To accomplish this Luke (Executive Director), David
Ripley (Director of Systems Engineering) and myself (not even a manager at the time)
were tasked with building a Network Automation team.

● The goal for us was to evaluate existing tooling (from Ansible to Python, Perl to NSO) to
design and build a set of tools to drive the GlobalNOCs Network Automation solution.

○ There were lots of different decisions here but mostly those aren’t of interest for
this discussion :)

● The good news, we had a lot of experience to build on
● We also had a lot of existing frameworks, policies, and other tools to build on
● Need a goal and a Vision

We Operate different from single network NetDevOps teams

● GlobalNOC supports many networks of many different sizes and types
● Our tools must be able to support these different networks

○ EVPN, ISIS, OSPF, MPLS, etc…
○ Cisco IOS, Cisco IOSXR, Juniper, Arista, HP, etc…

● What works for us might not work for a single University
● My focus is going to be mostly on building a Network Automation team however it is

not possible to do it without all the other supporting teams

The beginning… kinda - Sherpa - 2008

OESS - 2012-2023

Where to start - the people

● We already had a team working and running OESS basically full time with assistance
from others. That will make up the core of the team, with AJ as the manager.

● The NAP (Network Automation and Performance (yes we did perfSONAR as well))
would be 4 people and a manager

● 3 people were already essentially already filling these roles so we only needed to hire 2
○ This is still a long process (Syseng was hiring several positions at this time) in total

it took almost a year to fill the team

Hiring

● GlobalNOC Syseng teams generally are DevOps teams
○ Focus on both operational support and development skills
○ For hiring we try and find well rounded individuals who have the basics of both

Software Development and Linux Administration skills
○ Network knowledge is NOT a requirement
○ Computer Science degree is a must
○ Most of our applicants are IU Computer Science graduates (masters / bachelors)

● Our interviews:
○ Software Development questions (what is a thread)
○ Linux Administration questions (how can you tell what process is using up

memory)
○ White board software development (write an infinite loop)
○ Linux Administration practical (you could login to this server yesterday, but today

you can not how do you troubleshoot)
○ Soft skills (you have a disagreement with your manager how do you proceed)

Project and Vision

● Previously AJ had played with some basic automation using Ansible and GitHub to
automate the network, this was our framework to start with. The first step was to
define the application (build a set of requirements and then a design)

Working with Network Engineers to understand what they want

● During the Requirements and Design phase (early in the project start) interacting with
the network engineers was critical to make sure we had the right set of requirements.
GlobalNOC had also hired a dedicated Network Automation Engineer (Grover
Browning) to assist (essentially filled the SCRUM “Project Manager” role for us.

○ Grover helped communicate with other engineering teams to help us gather
requirements

○ Grover was also a test user for us
○ Grover also helped customers “onboard” to our tools one they were available to

them
● The Network Automation Engineer role was critical to the start of these tools, but was

temporary, lasting two years. However this role had great impact for our customers to
get the most of our the tools quickly.

GNAT/GSCS 2019

Policies and Consistency for our Engineers

● We try to have basic policies to protect the networks and the engineers
○ Code Policies

■ No committing to Master/Main
■ Code Reviews by the rest of the team
■ Requirements and Design documents for “large” features/bugs or new tools
■ All commits require a ticket number
■ All development happens in a branch

○ Service Policies
■ 3 business day notifications for maintenances (Syseng and Neteng)
■ 24x7 On-Call with Escalation
■ AARs for high-impact / long duration outages (or upon customer request)
■ Changes for changes to actually be pushed to the network

If the Software Engineers don’t understand networks how can they
automate a network?

● We rely on more senior engineers to understand the basics of networking
● We rely even more on the Network Engineers to know the networks they are working

on
○ Since we can’t understand and keep in our head all of the different networks we

really do need the Network Engineers to help us understand the technology
○ The hardest part is really communicating between Syseng and Neteng

● This worked for smaller more dedicated projects like Sherpa and OESS however trying
to do this automation across all of our customers led us to a new “class” of engineer

● The Network Automation Engineer was extremely helpful with dealing with these
issues but was only a temporary position to help us get off the ground we needed
something else

● Software Super Users Group
○ Network Engineers from across the teams who specialize in the GlobalNOC tools
○ Are interested in learning Network Automation skills such as Ansible
○ Bridge the gap between Syseng and Neteng

Software Super users - Experts at GlobalNOC tools and their Networks

● Software Super Users are a class of Network Engineer inside of the GlobalNOC. Each
team provides a Network Engineer to the team.

● This person interacts with Systems Engineering to get assistance using our APIs,
writings scripts, and is the “expert” on the GlobalNOC Tools

● They also provide uses cases and problems for the systems engineering teams to solve
○ New features in existing tools
○ New workflows
○ Help script and clean-up data on the network
○ Understand the network needs (they are a network engineer)

● This role is critical to help the Network Automation team implement and improve our
tools to work with each of our network customers

Network Operations Automation vs. Configuration Automation

● One request from Network Engineers was to assist with troubleshooting network
outages. This lead to the Network Troubleshooter tool

○ This was a great example of working with the Network Engineers to fill a need to
make their jobs easier

● The Network Automation team was able to quickly pick up this tool, work with the
engineers to gather requirements and put out an Alpha of the tool in 2 weeks.

● Quickly able to take end-user feedback (Network Engineers and the Service Desk) to
have a Beta of the current tool in another 2 weeks

● Fully deployment available for most GlobalNOC Customers in less than 2 months
○ While continuing with the operational and development of our other applications

in a small team

Bringing in the Service Desk for Network Automation Operations

● As we continue to improve our Network Operations Automation we have now started
to include the Service Desk, by working with their manager, and SSTs for networks to
improve the functionality of our Operational Automation tools for them

● We are still learning how to do this and improvements will continue to come to these
processes

○ We have started embedding engineering dedicated people into the Service Desk
(for example with ServiceNow) and we expect this to grow over time to improve
our communications and interactions

● One of the future features for the Troubleshooter is the ability to have a “run book” with
separate instructions for Service Desk users and Network Engineers allowing the
Service Desk to start the troubleshooting process before they call a Network Engineer

What I Wish You Knew
About NetDevOps

(Mike S)

~ 43 ~

None of this stuff is new.
● Frederick Brooks, The Mythical Man Month: Essays on

Software Engineering (1975).
○ “The Surgical Team” essay

● Peter Naur, Computing: A Human Activity (1992).
○ “Programming as Theory Building” essay

● Agile development movement:
○ “Manifesto for Agile Software Development” (2001).

● Continuous integration/continuous delivery movements:
○ Paul Duvall, Continuous Integration: Improving Software

Quality and Reducing Risk (2007).
○ Jez Humball and David Farley, Continuous Delivery:

Reliable Software Releases through Build, Test, and
Deployment Automation (2010).

● Lean methodology (going back to the 1950s):
○ W. Edwards Deming’s “System of Profound

Knowledge”.
○ Ohno Taiichi’s “Toyota Production System”.
○ David Anderson, Successful Evolutionary Change for

your Technology Business (2010).

~ 44 ~

Super last-minute addition @ 8:59am, Thu 3/7.

~ 45 ~

The absolute foundational requirement:
BE WILLING NOT TO DO DUMB THINGS.

● We do Dumb Things all the time.

● Specific definition of a Dumb Thing:
○ Doing something the way we’ve always done it …
○ … Despite the fact that the entire context and

environment of doing the thing is completely different
than when we originally decided to do it that way.

● It is incredibly easy to do Dumb Things:
○ Because it feels like a lot of effort to do something new,

and it’s incredibly easy to just go with the flow.
○ Because cognitive dissonance is a real thing, and the

easiest person to fool is yourself.
○ Especially if you have a lot invested in Being Right.

● In a context of intense, rapid, unceasing change – imagine
how easy it is to wind up doing Dumb Things all the time.

~ 46 ~

Here’s how you know you’re getting it wrong:
● You’re building cross-functional project teams made out of

slices of people from your REAL teams, which are all based
on occupational specialties.

○ INSTEAD, MAYBE: Build permanent cross-functional
teams oriented around what it takes to completely
deliver a service or suite of related services.

● You’re focusing on how many different chunks of work you
can simultaneously cram through your team in parallel,
because that just has to mean you’re being super-productive.

○ INSTEAD, MAYBE: Focus on how smoothly, efficiently,
and predictably you can move a single complex piece of
work from concept to completion.

● You’re diligently fixing problems with individual people to
improve their individual productivity, because that will lead to
overall increased productivity of the team.

○ INSTEAD, MAYBE: Work to understand and fix
problems with the systems within which people have to
try to get their work done.

~ 47 ~

Two more things to obsessively think about, part 1:
● Thing One: Shorten your control loops to match the rate of

change of the thing you need to control.
○ Imagine a thermostat that turns on the heat or the air

conditioning based on what the temperature was 12 hours ago.
○ Now imagine a hiring process that takes 12 months to produce

a hiring decision, in an environment where expertise needs
change every quarter.

○ Now imagine a tightly-centralized purchasing approval workflow
that requires high-level clearance to buy rapidly-consumed
office supplies.

○ Now imagine a high-functioning agile team implementing their
continuous delivery toolchain for a rapidly-evolving software
product where the EULA for every tool that the team wants to
try out must be reviewed and approved by the legal department
before it can assessed for utility.

● Pragmatically:
○ Minimize barriers to communication and coordination.
○ Drive locus of control out to the leaves of the tree.

~ 48 ~

Two more things to obsessively think about, part 2:

● Thing Two: Pay attention to the only supply chain that
actually matters.

○ Sourcing: Build a big pipeline of opportunities to find
awesome people.

○ Acquisition: When you find someone good, get them.
Period. Without hesitation or opportunistic negotiation.

○ Development: Give them everything they need to get their
job done, and to grow in confidence and expertise.

○ Retention: Give them reasons not to leave – losing their
health insurance doesn’t count.

● Pragmatically:
○ People are either assets or expenditures, pick which one

you think they are and act like you believe it.
○ If you just thought to yourself, “people are expenditures”: I

give up, you win, go on with your life.
○ Otherwise, consider expending at least as much effort on

figuring out the SADR stuff above as you spent on your last
technology RFP process.

~ 49 ~

Last thing for real I promise:

● One type of NetDevOps team could be:
○ A couple of network engineers
○ A couple of system administrators
○ A couple of software developers
○ etc.

● Another type of NetDevOps team could be:
○ Someone who’s worked as a network engineer and a

system administrator.
○ Someone who’s worked as a system administrator and a

software developer.
○ Someone who’s done network engineering and software

development.
○ etc.

● On the right: a snapshot in time of the skill sets of the people on
my team from a couple of years ago. So: right now, at this
moment in time, I MUCH PREFER the second model over the
first, even though it makes building the team a LOT HARDER.

Thank you!

