
9/20/2023

1

Control Chaos with IaC & Automation

Josh Whitlock
Sr. Cloud Engineer, University of California, Office of the President (UCOP)

[2]

• Systemwide infrastructure services
• Local infrastructure services
• > 50 cloud accounts

About Us

Josh Whitlock
Sr. Cloud Engineer

1

2

9/20/2023

2

[3]

About Us (cont’d)

The University of California Retirement Plan

• ~130,000 active members

• ~ 84,000 benefit payees including members, survivors and beneficiaries

• ~ $257M monthly payroll

Redwood Pension Administration System

• 24x7 access by RASC staff, campus community partners and

UCRP members via self-service

• ~150 interfaces and integrations

[4]

Where we thought we were starting from

• Migrate pension system from vendor hosted solution in Azure to AWS. Build out a defined set
of identical environments to support the SDLC plans and deliver to users for testing.

• Scope was already defined and known for the most part. We just needed to start on builds.

Scope

•An aggressive but reasonable timeline.
•No changes to functionality as part of migration, lift and shift.

Timeline

Requirements
• The analysis and requirements gathering was completed by a previous consulting partner.

They had been very thorough.
• System architecture, software requirements, interfaces already documented.
• We just had to get specific install instructions from the vendor.

3

4

9/20/2023

3

[5]

#1 Challenge: Starting with false assumptions
Requirements
•Many hours of discussions and Q&A sessions with vendor and user community to get “real”
requirements.

•Expecting thorough 600+ page documentation like most ERP install guides. Received a 12-page
word document mostly with screen prints.

•New requirement: gain user’s trust and confidence.

•Scope constantly changing. Basics like how many testing environments, what software was
needed, what was included in each environment took months to nail down.

•Constantly in discovery mode (new databases to migrate, new software to install).

Scope

•An aggressive but reasonable timeline. Required a major transformation for build timelines. We
had to reduce months to weeks or days. Delivery had to be as close to flawless as possible.

•Lift and shift except if changes improved efficiency, delivery and reduced overall scope.
•“Like-for-like” mantra used to table discussions. “Add to the roadmap” became common too.

Timeline

[6]

Challenge #2: The impacts of an unknown project timeline

Started out with:
• Can we do this?
• How do we do this?
• How long will this take?
• What do you mean we found more?

Then it becomes
• When can you have it?
• Why is it taking so long?
• Will the new environment have all the defects we had before?

Then it becomes
• Can you build two at a time?
• Can you build it in less than two weeks?
• Are we on track, will we make the go live schedule?
• Since that went so fast and well, could we…..?

5

6

9/20/2023

4

“Help me IaC, you’re my only hope.”

Infrastructure as Code
(IaC)

[8]

• Infrastructure as Code (IaC) is the managing and provisioning of infrastructure
through code instead of through manual processes. IaC allows you to build,
change, and manage your infrastructure in a safe, consistent, and repeatable way
by defining resource configurations that you can version, reuse, and share.

• Allows for consistent, repeatable deployments with approved configurations.

• Reduces risk. Use approved, secure configurations that are tested and validated
one time but deployed infinitely.

• Adapts well to iterative, agile development cycles. Defects can be identified,
resolved and deployed across a large number of systems in minutes.

• Deploy infrastructure at scale with extreme ease and speed.

• Increases operational efficiencies and reduces costs. Time is money. Utilize your
most expensive resource, IT team members’ time, more efficiently.

What is IaC and why do we rely on it?

7

8

9/20/2023

5

[9]

• Terraform is an infrastructure-as-code software product created by HashiCorp.
Users define and provide data center infrastructure using a declarative
configuration language known as HashiCorp Configuration Language (HCL),
or optionally JSON.

• Terraform codifies cloud APIs into relatively simple, declarative configuration
files.

What is Terraform?

[10]

Terraform In Action

Follow these 20 manual steps to
create an FSx file system (and hope
you create it with all the parameters
you wanted the first time). Don’t
forget to write your documentation
so the next can be created with the
same parameters.

Or use this simple Terraform block
(and reuse it for the next, and the
next, and the next)

9

10

9/20/2023

6

[11]

• Any infrastructure we deploy instantly has our security and build
standards applied, with no additional effort. Changes can
quickly, easily and consistently be applied to our infrastructure
resources. *

• We decided on a standard toolset. We chose Terraform as our
code platform, Scalr for execution and state management and
GitHub for version control. **

• We extended the TF language to create our own custom
modules for standardized deployments.

• We regularly identify new resource changes and features to
implement in our custom modules and iterate as our standards
evolve. Modules along with our Terraform configuration files are
versioned in GitHub.

Leveraging IaC @ UCOP

*Link to UCOP’s 2022 Moving from Cloud Chaos to Standards presentation included on the end slide.

**There have been recent developments regarding HashiCorp’s licensing of Terraform and an organized, community effort to provide an open-source version of Terraform, OpenTF. More
information regarding OpenTF is available at https://opentf.org.

[12]

• Some infrastructure resource changes can automatically trigger automation
(i.e. kick off PowerShell scripts, execute SSM documents, etc).

• Convert application pre-requisites and installs to native PowerShell scripts.
Remove or reduce complex, error-prone manual installation steps while
increasing consistency and quality of your delivery.

• Once coded, automations can be applied across infinite resources at time
of deployment or via tags, resource groups or other metadata variables.

• Allows for faster deployments that can be reused across any number of
environments and build combinations.

A Powerful Combination: IaC & Automation

11

12

9/20/2023

7

[13]

Automation in action

1. Windows user data can be in
batch, PowerShell, YAML, Base64

2. Our app EC2s get these Windows
features installed.

3. Assign drives from attached
storage.

4. Download and install required
software from a common S3
bucket.

5. Execute Systems Manger
documents to patch and join to the
domain.

6. Reboot the EC2.

Taking Control & Bringing
Order to Chaos with IaC &

Automation

13

14

9/20/2023

8

[15]

Chaos and overwhelm from the beginning

[16]

Taking a modular approach to design

Shared Components

Redwood Module

Roots
Module

UCRAYS
Module

Web Services
Module

Reporting
Module

15

16

9/20/2023

9

[17]

Redwood Module

Shared Components
VPC RDSMSAD

IAM

Route53

SSM FSxS3

Breaking each further into reusable blocks

Roots Module

Secrets Manager

S3Security Groups

Route 53
Security Groups

Security Groups
Security Groups

EC2
EC2

EC2
EC2

Security GroupsELB

Security GroupsEC2
Security GroupsEC2

Security GroupsEC2

IAM

Security GroupsEC2

Security GroupsELB
Route 53

S3

IAM

Secrets Manager

UCRAYS Module

Security GroupsEC2
Security GroupsEC2

Security GroupsELB
Route 53

S3

IAM

Secrets Manager

Web Services Module

Security GroupsEC2
Security GroupsEC2

Security GroupsELB
Route 53

S3

IAM

Secrets Manager

Every PM’s Dream

Shrinking Timelines Instead of
Increasing Them

17

18

9/20/2023

10

[19]

Leverage Reusable Code to Deliver Ahead of Schedule

• Our initial full environment build ~ 5 months

Included many hours of requirements gathering, documentation,
infrastructure revision and script development.

• Our second environment ~ 6 weeks

No overlap in builds or resources. Included previously unknown
requirements, software and features as well as defect fixes we were able to
bring in from lessons learned in first environment.

• Subsequent environments = 4-10 days

Each build is iterative. As defects are identified in any environment, we
resolve and implement the fix into our build process to prevent regression
issues. We apply fixes easily across all environments within our code.

[20]

Building 10 environments using copy and paste

Utilizing a standardized structure, we were able to build our environments in a
“cafeteria tray” style. Choose the blocks to use based on the requirements we were
provided with. If they changed after, it was just as easy to add another block.

19

20

9/20/2023

11

Where are we now?
What does the future hold?

[22]

• You can have it good and fast, but it won't be cheap.

• You can have it good and cheap, but it won't be fast.

• You can have it cheap and fast, but it won't be good.

We knew migrating an enterprise application with no documentation and an ever-evolving list of
requirements would not be cheap. There was also a high potential for inconsistencies and quality
issues that will undermine stakeholder confidence (not good). Based on the first build, we had our
doubts if it would ever be fast.

Which two could we pick?

By investing heavily upfront in analysis and creating a very solid technical foundation, we were able
to successfully deliver on both good and fast. We used a component based approach utilizing IaC and
automation to deliver high quality, consistent environments for our users.

The Law of Good, Fast and Cheap

21

22

9/20/2023

12

[23]

As you can expect, we are not stopping here. But to meet our timeline, we must
draw a line on what to include. There are numerous areas will evaluate and
improve upon post go-live.

• Further automations – identify weaknesses and remaining manual steps. Put
scripted automation in place where possible. Train staff to look for these
opportunities.

• Evaluate use of custom images and containers.

• Develop a blue/green deployment strategy to reduce risk and downtimes for
patching/upgrades.

• Evaluate and replace components with additional AWS managed services.

Future improvements for faster and easier deployments

[24]

UCOP @ Technology Exchange

Join us for our 2023 Technology Exchange presentations by UCOP team members:

• Moving from VM to Cloud Native Containers with Khalid Ahmadzai, Tuesday 11:20am-12:10pm

• Cloud Security By Default with Matthew Stout and George Holbert, Thursday 10:20am-11:10am

• Control Chaos with IaC & Automation with Josh Whitlock, Thursday 1:40pm-2:30pm

2022 Technology Exchange presentation by UCOP’s own Khalid Ahmadzai, Kari Robertson, Matt
Stout

Moving from Cloud Chaos to Standards:
https://internet2.edu/wp-content/uploads/2022/12/techex22-Cloud-MovingfromCloudChaostoStandards-AhmadzaiStoutRobertson.pdf

23

24

9/20/2023

13

Questions?

25

