
How to Tame Your Clouds
with Automation

September 21, 2023

Contents

• Introductions

• Why automation

• What tools and how they're used

• Demo

Disclaimer

Despite our attempts to keep this high level, there are parts in this
presentation where we do get technical.

Who are we?

• University of Florida IT (UFIT)
• Infrastructure and Communication Technology Team (ICT)

• Hyperconverged Infrastructure Team (HCI)
• Cloud Enablement Team (CE)

Members

• Directors
• Saira Hasnain – Associate VP and Deputy CIO

• Barry Kinter – Associate Director for Hyperconverged Infrastructure Team

• Cloud Enablement Team
• Eli Ben-Shoshan – Pre-Eminent Systems Administrator

• Nicholas Cecere – Systems Administrator 5

• Keith Sanders - Systems Administrator 5

• Paul Smith - Systems Administrator 5

• Eli Meister - Systems Administrator 5

• Derek Gales - Systems Administrator 5

What does UFIT do?

• University of Florida has a distributed IT model

• Each college/department has some local IT

• UFIT is the overall central IT department responsible for IT direction
of the University as a whole and Enterprise IT Services

• Plays a key part in advancing student success via the use of
technology

• We operate like a public utility, providing shared
Information Technology services throughout the University
community

• Our Products are common: Infrastructure, Operations, Systems
and Support

What does ICT do?

• Infrastructure
• All of Campus networking

• From the building to Internet connectivity

• Private Cloud deployed on VMWare

• Public Cloud access

• Storage Services for Campus

• Two Data centers in Gainesville

What does ICT do?

• Operations
• Acts as Network Operations Center (NOC)

• Operation Staff 24/7 responding to service alerts and customer calls

What does ICT do?

• Systems
• Authentication and Identity Management

• Active Directory for campus

• SAML2 via Shibboleth

• Infrastructure components for campus ERP system

• Manage cloud services
• Office 365

• Google Workspaces

• Dropbox

• Zoom

What does ICT do?

• Support
• 3rd tier in support for all services provided

• Help Desk is the 1st Tier

• 2nd tier is usually handled by local IT

What does ICT do?

• Offer these Services to both Enterprise customers and to hosting
customers across campus

Private Cloud Infrastructure

• Two Data Centers in 5 miles apart

• ~100 ESXi hosts

• >3500 VMs

• Synchronously replicated storage via NetApp Metrocluster

• Resilient architecture designed with 2 availability zones

• Each zone has separate
• Compute

• Storage

• Networking

Private Cloud Offerings

• Infrastructure as a Service
• VMs available for self-service by hosting customers around campus

• Enterprise customers can self-service in the same way or use automations
we will talk about today

• Platform as a Service
• Databases

• File Shares

• Web Hosting

Automation

• At our scale, Automation is a must for:
• Consistency of deployments

• Pace of requests is only increasing

• Management and Campus priority inversion

Terrable Stack

Terraform + Ansible =
Terrable

but Awesome!

Terraform

• Infrastructure as Code (IaC) tool
• Lots of providers that so that we can manage most any infrastructure

• Uses desired state to deploy infrastructure
• You tell it the final state (with some hints) and it will try and get there

• No need to tell it each step in the process

• Will create a dependency graph which it compares to the current, desired,
and last known state and will generate the steps to get to your desired
state

• Modular (more on this later)
• Let's you create reusable versioned modules with clean interfaces so that

you can accomplish the same task the same way over and over

Terraform

• Really good at managing and deploying base components for a
system

• Examples:
• Deploy a VM

• Manage day 2 operations like add a disk to an existing VM or change
networking

• Manage DNS entries

• Manage DHCP reservations

Terraform

• Needs to store current state someplace

• Not so good at managing attributes within an OS deployment like:
• Password maps

• Software installs

• Networking configuration

• We have another tool for that......

Terraform Code Example

• Show some terraform code

Ansible

• Ansible is also an IaC tool

• Does not used desired state but instead uses a procedural
approach via playbooks

• You give it the steps to run and it will take them for you

• Uses an inventory file to know what hosts to connect to with
specified credentials

Ansible

• Fantastic cross OS support
• Windows

• Linux

• Excellent for:
• Managing Users

• Deploying and configuring software

• Creating filesystems and mount points

• Managing Docker containers

• Modular (more about this later)
• Create reusable components called roles

Ansible

• Could be used to deploy core infrastructure components like VMs
but we think the desired state in Terraform is a better fit

• Terraform detects, notifies, and can remediate drift

• Ansible can't really detect drift

• Admin needs to account for drift when writing playbooks

Ansible Playbook Example

• Show a simple Ansible playbook

Use cases

• We use Terraform to:
• Deploy a VM from a template

• Set its cloud-init so that it has initial networking

• Register the VMs in DNS via Infoblox

• Create the Ansible inventory file

• We use Ansible to:
• Apply updates

• Install software

• Setup extra filesystems and mount points

• Configure software

Bonus - Vagrant

• Where do the VM templates come from?

• Hashicorp Vagrant

• Vagrant is a tool used to create a virtualized environments

• Can create:
• VMware VMs

• VMware templates

• AWS AMI

• Azure VM Image

• You can call Ansible playbooks during a Vagrant run

Secrets

• What are they?
• Password

• TLS Private Keys

• API access tokens

• We all have them and need a secure way to get them onto systems

• We might need to restrict which teams can see which password

• We all "should" be rotating our secrets on a regular basis, right?
• Required by many security standards (FedRAMP Moderate, PCI)

• We need to have an inventory of which systems have which secrets
in case "something" happens

Vault

• Hashicorp Vault is a secrets management engine

• Can store static secrets:
• Username/Password

• Private Keys

• Can interact with authentication systems to generate and vend
dynamic secrets

• Active Directory

• AWS IAM

• Azure AD

• Built-in policy engine so that you can limit how secrets are shared

Vault

• Highly Available
• Uses raft protocol to replicate secrets amongst multiple nodes

• Encrypts secrets at rest
• Well tested and hardened system of encryption for secrets at rest

• Can authenticate with lots of authentication backends
• LDAP
• AWS IAM
• Kerberos
• Azure AD
• JWT

• UF has Vault authenticate using LDAP to the Duo LDAP proxy which gives
us 2-factor for secrets

• Also gives us LDAP groups to identity which users are in which teams

Vault

• Vault has an agent that can be deployed on a VM

• Agent will check in with Vault on a regular basis to see if a secret
has changed

• Agent has a templating system (based on Go template) that can
replace/rewrite a file if a secret has changed

• Agent can call a script before and/or after a secret change

• UF uses the vault agent to update TLS private keys automatically

• But how do you authenticate a system to Vault?

Vault

• Vault has a concept of a Role

• A role connects:
• Backend Authentication System

• Policies

• This is how you map a set of authenticated entities to policies
which is where you limit access to certain secrets

Vault

• Vault has a powerful abstraction called an AppRole

• Instead of using only a token (like an access key or username/password) to
identify an authenticating entity, it uses a Role ID and a Secret ID

• The Role ID is the Role that the entity would like to assume
• It is not sensitive

• The Secret ID is a secret token used to authenticate to Vault
• Once it authenticates it uses a session token from there on out to keep access

• The combination of the two gives an entity access to a set of secrets based on
the policy assigned to the role

• Vault Agent uses an AppRole to authenticate with Vault

• Ansible interacts with Vault during VM deployment to request the Secret ID
on behalf of the VM and places the Secret ID in a file on the VM

Vault

Quick Summary

• Terraform is used to deploy the infrastructure components

• Ansible is used to configure any operating systems

• Vault is used to manage secrets

• Terraform and Ansible interact with Vault to gain access to secrets

• So what orchestrates this seemingly complicated dance

GitLab is the glue that ties all
these components together!

GitLab

• GitLab is a lot more than just a fancy web interface for managing git
repos

• Issue Tracking

• Merge Request with approvals

• Deployment pipelines triggered based on various events

• Terraform
• Registry for modules

• State repository

• Container registry

GitLab

• Deployment Pipelines are what facilitate Continuous Integration /
Continuous Deployment (CI/CD)

• Pipelines specify a set of stages

• Each stage has a set of steps that will be executed in order

• Dependencies can be setup between stages so that some can run in
parallel and others run in series

GitLab

• Pipelines are modular in such that you can import stages from
another pipeline

• GitLab allows for the creation of centrally managed stages that can
be imported for use by other pipelines

• This reuse of centrally managed stages is what allows for standards
to be defined and used by all

GitLab

• All these pipelines run on runners which could be:
• Docker based
• Kubernetes based
• Host with an agent

• We have different runners deployed for different groups
• Usually this is because the end point that is being manipulated via

CI is in a restricted network

GitLab

• Most of our pipelines need to have access to some secrets
• vSphere username/password to create VM

• AWS IAM access key id and secret

• Gitlab has a JWT token that it uses to authenticate to Vault

• When Gitlab authenticates to Vault it adds claims to the token
which specify which project or groups it is acting on behalf of

• Vault maps the claims to the appropriate Role

• The Role then enforces a set of policies

• The policies specify which secrets can be accessed

Notes

• This might seem complicated and overly complex but we
can assure you it is not once you get used to all the
components.

• Don't expect to accomplish this overnight. It takes a while to
get to this level of maturity. I took us about a year to get here
and to be honest there are still some teams that have not
really gotten onboard.

Demo

Demo

