
Good morning. I’m Matthew Economou, Vice President
of Engineering for Research Data and Communication
Technologies. My colleague, Hannah Sebuliba, who
developed the Single Logout code for SATOSA, is
unfortunately unable to attend. I am presenting in her
stead.

We have four major topics today. First, we’ll quickly
review how SAML Web Single Sign-on works and,
second, how SAML Single Logout extends the SSO
profile. Third, we’ll go over SATOSA’s role in identity
federations before, finally, digging into our
implementation of SLO in SATOSA.

We have a few reasons for wanting a functional logout
button. A big one is technical support. Having a working
logout/login workflow makes it easy for users to fix stale
resource permissions or rights assignments. Not
everyone can use temporary browser sessions, e.g., one
of our clients explicitly disables Chrome’s InPrivate
browsing feature, and many users do not know how to
selectively clear browser cookies, which can interrupt
other work should they wipe their entire browsing
history. Another angle is information security. We want
users to be able to explicitly terminate their login
sessions as this reduces the risk of successful session
hijacking attacks.

But before we talk about what “logging out” means in
an identity federation, let’s quickly review what it
means to “log in” with SAML.

The SAML 2.0 Web Browser SSO profile connects service
provider and identity provider logins.

A service provider (or relying party) is any web app that
depends on separate web service to authenticate—and
sometimes to authorize—the web app’s users. The SP
must do four things:
• discover where a user is from
• request user authentication by the selected identity

provider
• consume user information released by the IdP, e.g.,

unique identifiers, contact information, group
memberships, entitlements

• manage the user’s session while controlling access to
app resources and functionality

An identity provider (IdP) is a web service that
authenticates users who are accredited by its operator.
The IdP does three things:
• responds to authentication requests
• verifies the user’s credentials
• describes the user to the SP, e.g., affiliations,

entitlements, identifiers, assurances
(An IdP can also initiate the login process on its own in
some cases, but that isn’t part of today’s discussion.)

In describing a user, the IdP will retrieve or synthesize
user information from one or more data sources, such as
an enterprise directory service. This information is
returned to the SP in a SAML <Response> message. All
SAML messages—requests and responses—are relayed
by the user’s web browser (front-channel presentation).

At scale, SPs and IdPs have to solve the identity and
access coordination problem:
• If you operate a service provider, you want many

people from many institutions to use your app.
• If you operate an identity provider, you want your

users to be able to access a wide variety of useful
services.

An identity federation like InCommon is how service
providers and identity providers find and trust one
another.

Protecting the confidentiality, integrity, and availability of
Single Sign-on means following current good multilateral
identity federation practices, which are a variety of
entity categories, frameworks, profiles, and services—
some of which you’ll learn about in other talks here,
such as InCommon Baseline Expectations or the REFEDS
Assurance Framework. In this talk, we’re focusing on
protecting sessions from hijacking. The simplest session
hijacking mitigation relies on the browser just deleting
session cookies when the user closes a tab or a window.
Hackers can’t exfiltrate data that doesn’t exist, but this
still leaves the session active server-side. And
technically, the browser only deletes references to the
session data in memory. That data might still be

recoverable via crash dumps or other debugging tools.
(This happened to Microsoft recently.) The server can
automatically end the session after a period of inactivity,
but that still leaves one vulnerable until the session
actually times out server-side. A way to further mitigate
this risk of session hijacking is for the user to explicitly
ask their web applications and identity provider to log
out because then the session is deleted (or invalidated)
on both the client side and the server side,
simultaneously. This is why Single Logout is important—
it implements “explicitly logging out” in the context of a
SAML federation.

Just like how the SAML 2.0 Web Browser SSO profile
connects service provider and identity provider logins,
the Single Logout profile links service provider and
identity provider logouts. With SLO in place, users can
choose to terminate with a single action their sessions
on all web apps accessed in this browser—that is, all
web apps that support SLO. Single Logout is bi-
directional. The logout process can be started by any
entity with an active session, SP or IdP. Because of the
decentralized nature of identity federations—remember,
SPs and IdPs communicate indirectly through users’ web
browsers—whether a given entity supports SLO must be
reflected in their federation metadata. Note that
automatic session termination, e.g., an inactivity

timeout, does not trigger the Single Logout flow.

Single Logout works like Single Sign-on, with logout
requests and responses being exchanged
asynchronously, via the user’s browser, or synchronously,
with IdPs and SPs communicating directly via the Simple
Object Access Protocol (SOAP). Front-channel
presentation is generally regarded as being less
complicated to implement and quicker to start the
logout process. However, it can be vulnerable to cross-
site scripting (XSS) or cross-site request forgery (CSRF)
attacks, requiring careful mitigation by implementers.
Back-channel presentation of the logout request and
response isn’t vulnerable to XSS or CSRF attacks, but it’s
widely regarded as more difficult to implement and
deploy.

Here, we’re focusing on SP-initiated front-channel
logouts. Where the SSO profile uses
<AuthenticationRequest> and <Response> messages to
perform federated logins, the SLO profile uses
<LogoutRequest> and <LogoutResponse> messages.
Because only the IdP knows everywhere the user has
logged in, the IdP is responsible for relaying logout
requests from the initiating service provider to all the
other SPs.

A <LogoutRequest> message has several parts, but let
me draw your attention to these four:

1. Destination, restating where the LogoutRequest was
sent by the browser

2. <Issuer>, the entity ID of the SP or IdP initiating SLO

3. <NameID>, specifying which user initiated the logout

4. SessionIndex, which uniquely identifies the SSO
session for this browser at the IdP

A user might be logged into the same web app on
multiple devices, e.g., a team chat tool running on their
computer and their phone. The SP must be able to link
the user’s session on a particular device to the
corresponding session at their IdP. Otherwise, logging
out of the web app on one device might mistakenly log
the user out of web apps on other devices.

To bind the right SP and IdP sessions together, the
identity provider must include three pieces of
information in every successful authentication

<Response>.

First, it must return an <Assertion> with a <Subject> and
an <AuthnStatement> (authentication statement).

Second, the <Subject> must include a
<SubjectConfirmation> with a Method set to “bearer”,
which means that user themselves—not some third
party—is involved in this session.

Third, the <AuthnStatement> must have a SessionIndex,
which gives the service provider a handle on the user’s
session at the IdP. To protect the user’s privacy, each SP
will receive a unique SessionIndex. With this
information, the SP can ask the IdP to log out the user on
the same device they’re using to access the web app.

A <LogoutResponse> message is structured like an
authentication <Response>, but simpler, with a
Destination, <Issuer>, and <StatusCode>.

Single Logout involves contacting multiple entities
hosted in different environments by unrelated
organizations. No one person or organization is in
control. If one entity sends a <LogoutRequest> to
another that doesn’t support SLO, the logout process will
fail, leaving sessions active against the user’s expressed
intent. Service providers, identity providers, and
federation operators must make certain that federation
metadata includes the correct SLO bindings to avoid this
problem. If entities support back-channel presentation
of logout requests, they must also publish the relevant
public keys in federation metadata to facilitate SOAP
endpoint authentication. Note, too, that network
connectivity issues can interrupt the logout process in an

unrecoverable manner. And even after all that, some
entities simply will not support SLO at all, ever. This
means Single Logout cannot replace other session
hijacking mitigations such as user training to close the
browser after a logout action or server-side automatic
session termination.

A service provider must be able to initiate a logout flow
and handle any incoming logout requests or logout
responses.

For an identity provider to implement Single Logout, it
must keep track of which SPs the user accessed. The IdP
must also include a SessionIndex in all SSO <Response>
messages, which binds SP sessions to IdP sessions on the
current device as mentioned. The IdP must also be
capable of propagating logouts to SPs. This includes
handling errors returned by those SPs during the logout
flow and notifying users to take the appropriate actions.

Note that automatic session termination should not

trigger a logout flow.

Some research collaborations (such as LIGO or the NIAID
Discovery Through Collaboration Platform) operate
services for use across multiple institutions and cannot
cede user identification or access management decisions
to a single campus IdP. These collaborations need their
own authentication and authorization infrastructure
(AAI). The AARC Blueprint Architecture describes this in
detail, but an AAI or virtual organization (VO) has three
essential components:
• a user registry that manages information about

research collaboration members and their access
rights

• a policy repository that controls access to end
services based on users’ entitlements

https://aarc-project.eu/architecture/

• an identity proxy that combines campus IdP-
provided user information with the registry-managed
rights assignments

SATOSA is an identity proxy. Written in Python, it can
translate authentication requests and responses among
three different protocols—SAML, OAuth 2.0, and OpenID
Connect. SATOSA implements SAML using the PySAML2
library.

To the federation, SATOSA acts like a single service
provider that represents the research collaboration. To
the collaboration’s web apps, it acts like a single identity
provider representing the rest of the federation. SATOSA
is stateless, which means it doesn’t track proxied
authentication requests or responses after they finish
(successfully or not).

To enable Single Logout profile to work for SATOSA, it is necessary to address the
stateless nature of the proxy and implement changes to facilitate SLO.
Adaptations:
● Session management

○ Keep track of the sessions, expiry and timeout
○ Require/Extract the SessionIndex value from the SAML Response
○ Storage and deletion of the SAML Assertions

● Track and coordinate SSO sessions
○ Keep track of the users authentication status across accessed

● Add Single Logout endpoint handler to receive and process SLO messages
○ On the SAML frontend and backend
○ The proxy metadata should include SingleLogoutService endpoints
○ Provide support for Front-channel and Back-channel binding types

● Logout Propagation
○ Return more than one response for a single request

====
PySAML2 SLO support
● SP storage of SAML Assertion required for logout
● Supported SLO Binding Types in SATOSA

Since there are two IdPs, the proxy IdP and the campus
IdP, two assertions are generated and need to be stored
to construct the respective LogoutRequest messages.
The campus IdP sends an Assertion to the proxy SP, and
the proxy IdP sends an Assertion to each of the research
collaboration’s SPs. The proxy IdP is built with the
PySAML2 server and has support for session storage, but
the proxy SP is built with the PySAML2 client and
currently has no support for session storage, hence the
need to create a store for the Assertion info.

The ideal implementation would be to use/create SAML
Backend storage and not create a data store in SATOSA
itself.

The idea to use pysaml2 is borrowed from oidc
implementation in satosa which is stateful.

To configure storage for SATOSA you must simply provide
your database connection details and SATOSA will
automatically take care of setting up the required tables.

Each authenticated request in SATOSA has:
● unique identifier/primary key
● session_id (identify the user’s session)
● assertion information

authn state looks like:
{
 'auth_info': {
 'session_index':
['_7cb66bf7b89abfe29ab2f72e2ebfa256'],
 'auth_class_ref':
'urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtec
tedTransport',
 'timestamp': '2023-04-25T10:54:11.026Z',
 'issuer': 'https://samltest.id/saml/idp',
 'authority': None
 },
 'requester': 'https://example.org/shibboleth/sp',
 'requester_name': [{'text': None, 'lang': 'en'}],
 'subject_id':

'AAdzZWNyZXQx0uehqJgC/M3HJrpgeXMFm+havXxpEIRy
JQwBaEWN3K1laB707y2HKHEvF63jb8PA==',
 'subject_type': 'urn:oasis:names:tc:SAML:2.0:nameid-
format:transient',
 'attributes': {
'displayname': ['Sheldor'], 'givenname': ['Sheldon'],
'mail': ['scooper@samltest.id'], 'surname': ['Cooper'],
'uid': ['sheldon']
 }
}

(What happens to stored sessions for which the user has
not initiated SLO?)

SATOSA uses Gunicorn to receive inbound requests,
route them to the appropriate handler, and return a
response.

To make outbound requests as is required for logout
propagation, we use the Python requests library.

When the proxy IdP receives a LogoutRequest, it
generates a list of all SPs with an active SSO session and
propagates LogoutRequest messages to each of them.

To do this, the store is queried using the session_id as a
filter (session scope). For each SP in the list, SATOSA
generates a <LogoutRequest>. It sends that message to

the SP using its preferred binding type. To prevent
stalling of the SLO process, SATOSA does not await
LogoutResponses.

This diagram shows how Single Logout works in a
SATOSA many-to-one configuration. Ideally, the SPs and
IdP support SLO fully and have SLO endpoints in their
metadata. The research collaboration’s SPs are only
aware of the session with the proxy IdP. Campus IdPs
are only aware of the session with the proxy SP.

After SSO authentication, the campus IdP authentication
Response sent to proxy SP is stored. SATOSA uses the
session_id to identify the user’s browser session. When
the authentication response is routed to the proxy IdP, it
stores the SSO assertion in the session storage.

SP-initiated logout sends a LogoutRequest to the proxy

IdP, which checks the storage for other sessions using
the same session_id. The proxy IdP then initiates logout
for each SP with a session and deletes sessions from the
database storage. When finished, the proxy IdP
forwards the logout request to the proxy SP.

The proxy SP creates a LogoutRequest for the campus
IdP. SATOSA selects a binding type and endpoint from
those provided in the campus IdP’s metadata. The IdP
receives the LogoutRequest, processes it accordingly,
and responds with a LogoutResponse.

When the proxy SP receives the LogoutResponse, it
checks the StatusCode/Message. If the campus IdP
returned a logout error, the proxy SP will return a
SATOSA response message indicating an error to the
user.

This simplified diagram showing how the proxy IdP handles LogoutRequest messages
sent to its SingleLogoutService endpoints.

TODO: add callback

In SP-initiated Logout, the proxy IdP will receive the LogoutRequest. The proxy IdP
must:
● Parse the LogoutRequest
● Look up the SP sessions that match the user’s session id in storage
● Send LogoutRequest messages to each SP matching the user
● Check whether the Initiating SP requires a response

○ Generate and return a LogoutResponse if required
● Delete the SP session from the database
● Call the logout callback function to redirect to the proxy SP

The proxy SP must:
● Lookup the SP session information in the database
● Generate and send a LogoutRequest to the IdP

After logout is complete at the proxy IdP, the logout
callback function will be called. The function will route
the request to the proxy SP, which will initiate SLO at the
IdP. The arguments for creating the LogoutResponse are
retrieved from the SATOSA store and will include the
NameID of the user and the SessionIndex that was sent
in the original Assertion from the campus IdP. The proxy
SP will then wait for a LogoutResponse from the campus
IdP with details on the status of Logout. If the campus
IdP is connected to other SPs, they may also receive
LogoutRequests from the IdP if the user chooses to log
out of all SPs.

After the campus IdP terminates its SSO session, it will
send a LogoutResponse to the proxy SP. Note that the
browser session information is deleted, and SATOSA
cannot rely on browser cookies to return information
required to complete the state. When the proxy SP
receives a LogoutResponse, the session_id is different
the previous requests because the session was
terminated. The logout_response handler will parse the
LogoutResponse and check the StatusCode of the
LogoutResponse. If it’s a success status code, the proxy
SP calls the Logoutback function. If it’s an error, the
proxy SP will return a HTTP response with error details.

SLO configuration is optional:
● Database is required
● SLO endpoints are optional
● pysaml2 server storage default is memory
● option to sign requests (but currently hard coded to true)

In the proxy_conf.yaml file, configure a database that will be used to store SLO state
information.

Also:
● saml2_frontend

○ slo endpoints
○ session storage

● saml2_backend
○ slo endpoints

● microservices
○ custom frontend and backend that inherit from the base classes should add

logout callback classes

Example proxy config:
https://gist.github.com/sebulibah/2e864689f891b43254373be575655633

https://gist.github.com/sebulibah/2e864689f891b43254373be575655633

To add the SLO configuration to the saml2 frontend you
need to add the single logout service endpoints and
configure session storage following the PySAML2 library
guide. Both front channel and back channel bindings are
supported.

The PySAML2 server can store assertions in memory or
in MongoDB.

Example saml2_frontend config:
https://gist.github.com/sebulibah/ae628deceef06034b5
e7c3001a801a17

https://gist.github.com/sebulibah/ae628deceef06034b5e7c3001a801a17
https://gist.github.com/sebulibah/ae628deceef06034b5e7c3001a801a17

In the proxy SP, you will need to add
single_logout_service endpoints. Again, both front
channel and back channel bindings are supported.
When running SATOSA for the first time, the metadata
will be generated and will include the Single Logout
Service endpoints.

Example saml2_backend config:
https://gist.github.com/sebulibah/41eb64788d8568d5d
a9efdef5729edf3

https://gist.github.com/sebulibah/41eb64788d8568d5da9efdef5729edf3
https://gist.github.com/sebulibah/41eb64788d8568d5da9efdef5729edf3

TALK

