
Amy Liebowitz, University of Michigan

 Automating a Campus with
Cisco NSO

Outline

• Overview of Automation at UM
• Why NSO?
• Quick NSO Overview
• Campus Service Design
• Configuration Example
• On-Boarding Buildings into NSO
• NetDash Integration
• Lessons Learned
• Questions

University of Michigan Automation - Overview

• Goal: Automate the entire campus network with a single configuration source of
truth (i.e. “source of intent”).

• Major campus network refresh project provides unique opportunity.
• Project encompasses entire network: edge, core, distribution, data center.
• New devices will be installed in parallel (as opposed to rip-and-replace).
• First major greenfield deployment in over 10 years.

• Automation strategically coupled with refresh.
• All new devices are fully automated.
• Migrated buildings have automated access layer as well.

• Currently around 35% of routers and switches are automated (1700 out of 4600).

Why Cisco NSO?

• New network will be primarily composed of Cisco NXOS and IOS devices.

• IOS and NXOS have significant limitations when attempting “byo automation”.

• CLI is designed to be interactive (as opposed to stateless/RESTful).
• Limited or no native candidate config/rollback features.
• yang/netconf implementation not well-supported.

• Cisco NSO:
• Is a product fully supported by Cisco.
• Supports many non-Cisco platforms (at least for now).
• Scalable and extensible enough to automate the entire campus.

NSO Overview - Device Manager

• NSO stores all network device configurations in one database.
• Database is a tree-like structure defined with YANG.
• Network Element Drivers (NEDs) convert device configurations into YANG-defined

structured data.
• NEDs exist for many different network vendors.
• Enables staging, comparing, and rolling back configuration changes on devices

that don’t support this natively (namely IOS and NXOS).
• Changes on multiple devices can be implemented with a single commit to the

database.
• If a single failure is detected, changes on all devices are rolled back.
• Can change this behavior with different commit options.

NSO Overview - Service Manager
• Services are custom abstractions of network features - things like “VRF”, “switchport”, or

“access list”.
• You define your own services in YANG based on what makes sense for your organization.
• You write code that maps service data to device configuration.

• Code applies custom XML templates that reference NED settings to drive device
configuration.

• NSO provides code and template skeletons to work from.
• When templates are applied, NSO calculates the difference between desired and existing

device configuration.
• NSO pushes the minimum number of commands needed to achieve desired state to

the devices.
• “Reverse diff” is saved so NSO can back out changes when service is deleted.

Campus Service Design
• Three major service types

• High Level Services
• User-facing abstractions of major network components.
• Most complex high level service is “distribution”.

• Models all aspects of a building network.
• Low Level Services

• Hides platform-specific complexities from higher level services.
• Only configured by higher level services (“service stacking”) - hidden from the CLI.
• Most complex low level service is “phy”.

• Models all aspects of physical port configuration.
• Data Only Services

• Stores structured data used by other services.
• Changing this data does not trigger any configuration changes on the network.

Campus Service Design

Example - Configuring a Building Network

General Steps

1. Define details in data-only network service.

● Subnet(s), VLAN ID, VRF, DHCP Relay Servers, ACLs.

2. Tie network to a building in the distribution service.

● Service code configures the network on the building distribution routers.

3. Configure access ports.

● Service code defines VLAN on switches, adds it to trunk allowed lists, and

configures access ports.

Example - Configuring a Building Network

Step 1: Define network in data-only network service
admin@ncs% show | compare
 services {
+ network V-TEST-NETWORK {
+ role user;
+ layer3 {
+ vrf PRIMARY;
+ primary-ipv4-subnet 10.255.0.0/24;
+ dhcp-relay-servers CORE1-DHCP-SERVERS;
+ ingress-acl ANTISPOOF-IN;
+ egress-acl ANTISPOOF-OUT;
+ }
+ layer2 {
+ vlan-id 50;
+ }
+ }
 }
[ok][2023-09-07 15:02:18]

Example - Configuring a Building Network

Step 2: Add Network to Building (Distribution Zone)
admin@ncs% set services distribution bldga network V-TEST-NETWORK
[ok][2023-09-07 15:03:19]
admin@ncs% commit dry-run outformat native
native {
 device {
 name dl-bldga-1
 data ip access-list VLAN50-IP-IN
 10 permit udp any any eq bootps
 ... [output omitted] ...

 vlan 50
 name V-TEST-NETWORK
 exit
 interface Vlan50
 no shutdown
 description V-TEST-NETWORK
 vrf member PRIMARY
 ip access-group VLAN50-IP-IN in
 ip access-group VLAN50-IP-OUT out
 ip address 10.255.0.2/24
 ip dhcp relay address 141.211.147.229
 ... [output omitted] ...

Example - Configuring a Building Network

Step 3: Configure access ports
admin@ncs% set services distribution bldga switch al-bldga-1 switchport Gi1/3 description
"Test user" mode access vlan V-TEST-NETWORK
...
admin@ncs% commit dry-run outformat native
native {
 device {
 name al-bldga-1
 data vlan 50
 name V-TEST-NETWORK
 !
 interface Port-channel1
 switchport trunk allowed vlan 50
 exit
 interface GigabitEthernet1/3
 no shutdown
 switchport
 switchport mode access
 switchport access vlan 50
 description "Test user"

... [output omitted] ...

On-Boarding into NSO

• Approximately one building a week is migrated to the new core.
• Migration has three phases:

• On-boarding
• New distribution routers are brought online and connected to the new core.

• Pre-migration
• Network service data is populated from the existing router configuration.

• Migration
• Temporary trunk built between old and new routers.
• SVIs and loopbacks migrated from old routers to new.
• Switchport and uplink service data is generated.
• Switch uplinks are physically re-cabled.
• Old routers are removed from service.

On-Boarding into NSO

• NSO Actions are heavily leveraged during the migration.
• Actions are meant to effect a one-way change (no “reverse diff” is saved).
• Like services, structure of an action is defined with yang and implemented in code.
• Actions are invoked from the CLI (or via netconf/restconf)
• NSO has many built-in actions (eg “sync-from”, “fetch-ssh-host-keys”).

• General migration automation strategy:
• Use actions to on-board building devices into NSO.
• Use more actions to translate NSO device configuration data into service data.

• Device configuration data is already structured - config parsing has never been
easier.

• Actions also pull data from external sources (google sheets, IPAM, etc).

NetDash Integration
• We support a custom web application that enables unit IT to make access port changes

in buildings.
• Legacy app is called “Device Configuration Tool” (DCT).

• Reads and writes directly to switches.
• Changes made in DCT cause sync issues with devices managed by NSO.
• Written in perl, original developer is retired.

• New tool called NetDash has been developed to replace DCT.
• Django app, much easier for developers to support.

• Reads and writes to NSO via NETCONF.
• Developed dedicated NSO Actions for this application.
• Currently being augmented to support data center switches.

• Buildings on-boarded into NSO are disabled in DCT - users are directed to NetDash

NetDash Integration

Lessons Learned

● Don’t try to design for every use case
○ Predicting the future is hard
○ You don’t have to support everything initially
○ Augmenting services later is easier than attempting to unravel complexity in

production
○ Low-touch, one-off configurations can be left out of service design

■ As long as the NED supports the configuration you can manage these changes
with NSO device manager.

■ But only if a service won’t overwrite the configuration.

Lessons Learned

● Servicepoint placement is important in NSO
○ Servicepoints trigger code execution when any data at or below in the tree is

changed.
○ Servicepoint evaluates all data, not just what has changed.
○ Break servicepoint into multiple smaller ones that live further down the tree to

increase performance and decrease individual servicepoint complexity.
○ Originally we had a servicepoint that addressed any change on an access layer

switch.
■ Since changed to several servicepoints that handle changes at a port level.
■ Need an action that re-deploys all ports on a switch as a result.

Q & A

amylieb@umich.edu

